Author Archives: atenvelden

KRACKing WPA2

A new vulnerability in the WPA2 protocol was discovered by Mathy Vanhoef (researcher at KU Leuven) and published yesterday. The vulnerability – dubbed  “KRACK” – enables an attacker to intercept WPA2 encrypted network traffic between a client device (e.g. mobile or laptop) and a router. Depending on the network configuration it is even possible for an attacker to alter or inject data. Since the vulnerability lies in the WPA2 protocol, most platforms are susceptible to the attack. However, the impact is even higher on Android 6.0+ and Linux devices due to their specific implementation of WPA2.

The original publication can be found at https://www.krackattacks.com, with full details, a demonstration of the attack, and recommendations.

How does it work?

The KRACK vulnerability can be exploited by using Key Reinstallation AttaCKs. When a device wants to connect to a wireless access point, the WPA2 protocol will use a 4-way handshake. Part of this handshake consists of an acknowledgment that is sent from the client device to the wireless access point to ensure the client has successfully received the signed key. However, until the wireless access point has received the acknowledgment, it will continuously retransmit the signed key. If the attacker is able to block the acknowledgement from being sent to the wireless access point, the attacker is able to record and replay the signed key, which ensures the reinstallation of an already used key on the client’s device. As soon as the key is installed, it will be used to encrypt the network traffic between the client and the wireless access point. Since the attacker knows the keystream, he is able to decrypt the network traffic.

Since this attack exploits a vulnerability in the four-way handshake, all WPA versions are vulnerable.

Are all devices vulnerable?

Since this vulnerability is found in the WPA2 protocol, all platforms, such as Windows, Linux, MacOs, iOs, OpenBSD and Android can be targeted. Linux and Android 6.0+ devices are especially vulnerable, because the WiFi client will clear the encryption key from memory after installation. If the Android device is told to reinstall they key, the cleared out key will be installed, which is actually an all-zero key. This makes it trivial for an attacker to intercept and inject or alter data sent by these devices.

Does this mean that we need to stop using WPA2?

Although an attacker is able to intercept traffic and in some cases traffic can be altered or injected, this attack can only be performed when the attacker is in close proximity of the client’s device and wireless access point.

If the attacker has successfully exploited this vulnerability, traffic over TLS, such as HTTPS or VPN traffic, will not be accessible to the attacker.

What should we do? 

When this vulnerability was discovered, it was first disclosed to various vendors. Many vendors (e.g. Microsoft, Cisco) have already released patches for this issue. Install the available patches on all your devices or contact your vendors to see if a patch is available. A list with all patches per vendor can be found on https://www.kb.cert.org/vuls/byvendor?searchview&Query=FIELD+Reference=228519.

Furthermore, it is strongly advised to only use encrypted connections, such as HTTPS or a VPN connection, when sensitive content is transmitted over WiFi networks.

Additionally, watch out for rogue access point in your surroundings, office buildings.

More information? 

NVISO analysts are still working on additional research and will update this blogpost with any results.

Should you require additional support, please don’t hesitate to contact our 24/7 hotline on +32 (0) 588 43 80 or csirt@nviso.be.

If you are interested in receiving our advisories via our mailing list, you can subscribe by sending us an e-mail at csirt@nviso.be.